Fuzzy quasi-metrics for the Sorgenfrey line
نویسندگان
چکیده
We endow the set of real numbers with a family of fuzzy quasi-metrics, in the sense of George and Veeramani, which are compatible with the Sorgenfrey topology. Although these fuzzy quasi-metrics are not deduced explicitly from a quasi-metric, they possess interesting properties related to completeness. For instance, we prove that they are balanced and complete in the sense of Doitchinov and that only one of them is right K-sequentially complete. We also observe that compatible fuzzy quasi-metrics for the Sorgenfrey line cannot be left (weakly right) K-sequentially complete.
منابع مشابه
Some Properties of the Sorgenfrey Line and the Sorgenfrey Plane
We first provide a modified version of the proof in [3] that the Sorgenfrey line is T1. Here, we prove that it is in fact T2, a stronger result. Next, we prove that all subspaces of R (that is the real line with the usual topology) are Lindelöf. We utilize this result in the proof that the Sorgenfrey line is Lindelöf, which is based on the proof found in [8]. Next, we construct the Sorgenfrey p...
متن کاملOn Constructing Topological Spaces and Sorgenfrey Line
We continue Mizar formalization of General Topology according to the book [19] by Engelking. In the article the formalization of Section 1.2 is almost completed. Namely, we formalize theorems on introduction of topologies by bases, neighborhood systems, closed sets, closure operator, and interior operator. The Sorgenfrey line is defined by a basis. It is proved that the weight of it is continuu...
متن کاملSubspaces of the Sorgenfrey Line
We study three problems which involve the nature of subspaces of the Sorgenfrey Line S. It is shown that no integer power of an uncountable subspace of S can be embedded in a smaller power of S. We review the known results about the existence of uncountable X ⊆ S where X is Lindelöf. These results about Lindelöf powers are quite set-theoretic. A descriptive characterization is given of those su...
متن کاملSome Properties and Applications of Fuzzy Quasi-Pseudo-Metric Spaces
Abstract. In this paper we establish some properties of fuzzy quasi-pseudo-metric spaces. An important result is that any partial ordering can be defined by a fuzzy quasi-metric, which can be applied both in theoretical computer science and in information theory, where it is usual to work with sequences of objects of increasing information. We also obtain decomposition theorems of a fuzzy quasi...
متن کاملRepresentation theorems for fuzzy orders and quasi-metrics
Let L be a complete residuated lattice. Then we show that any L-preorder can be represented both by an implication-based graded inclusion as defined [1] and by a similarity-based graded inclusion as defined in [2]. Also, in accordance with a duality between [0,1]-orders and quasi-metrics, we obtain two corresponding representation theorems for quasi-metrics.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Fuzzy Sets and Systems
دوره 222 شماره
صفحات -
تاریخ انتشار 2013